原文链接及内容

运行界面

本例使用ol/source/Raster生成数据。栅格数据源接受任意数量的输入数据源(基于切片或图像),并在输入数据上运行一个操作管道,最终操作的返回值用作输出数据源的数据。
在本例中,使用单个平铺高程数据源作为输入。晕渲地貌是在一个单一的“图像”操作中计算的。通过在栅格数据源上设置operationType: 'image',对每个输入数据源使用ImageData对象调用该操作,也可以使用通用data对象调用操作。在这个例子中,来自上述输入的太阳仰角和方位角数据被分配给这个数据对象,并在着色操作中访问。着色操作返回一个ImageData对象数组。当栅格数据源被图像层使用时,将渲染管道中最后一个操作返回的第一个ImageData对象。

main.js代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import Map from 'ol/Map.js';
import View from 'ol/View.js';
import {Image as ImageLayer, Tile as TileLayer} from 'ol/layer.js';
import {OSM, Raster, XYZ} from 'ol/source.js';

/**
* Generates a shaded relief image given elevation data. Uses a 3x3
* neighborhood for determining slope and aspect.
* @param {Array<ImageData>} inputs Array of input images.
* @param {Object} data Data added in the "beforeoperations" event.
* @return {ImageData} Output image.
*/
function shade(inputs, data) {
const elevationImage = inputs[0];
const width = elevationImage.width;
const height = elevationImage.height;
const elevationData = elevationImage.data;
const shadeData = new Uint8ClampedArray(elevationData.length);
const dp = data.resolution * 2;
const maxX = width - 1;
const maxY = height - 1;
const pixel = [0, 0, 0, 0];
const twoPi = 2 * Math.PI;
const halfPi = Math.PI / 2;
const sunEl = (Math.PI * data.sunEl) / 180;
const sunAz = (Math.PI * data.sunAz) / 180;
const cosSunEl = Math.cos(sunEl);
const sinSunEl = Math.sin(sunEl);
let pixelX,
pixelY,
x0,
x1,
y0,
y1,
offset,
z0,
z1,
dzdx,
dzdy,
slope,
aspect,
cosIncidence,
scaled;
function calculateElevation(pixel) {
// The method used to extract elevations from the DEM.
// In this case the format used is
// red + green * 2 + blue * 3
//
// Other frequently used methods include the Mapbox format
// (red * 256 * 256 + green * 256 + blue) * 0.1 - 10000
// and the Terrarium format
// (red * 256 + green + blue / 256) - 32768
//
return pixel[0] + pixel[1] * 2 + pixel[2] * 3;
}
for (pixelY = 0; pixelY <= maxY; ++pixelY) {
y0 = pixelY === 0 ? 0 : pixelY - 1;
y1 = pixelY === maxY ? maxY : pixelY + 1;
for (pixelX = 0; pixelX <= maxX; ++pixelX) {
x0 = pixelX === 0 ? 0 : pixelX - 1;
x1 = pixelX === maxX ? maxX : pixelX + 1;

// determine elevation for (x0, pixelY)
offset = (pixelY * width + x0) * 4;
pixel[0] = elevationData[offset];
pixel[1] = elevationData[offset + 1];
pixel[2] = elevationData[offset + 2];
pixel[3] = elevationData[offset + 3];
z0 = data.vert * calculateElevation(pixel);

// determine elevation for (x1, pixelY)
offset = (pixelY * width + x1) * 4;
pixel[0] = elevationData[offset];
pixel[1] = elevationData[offset + 1];
pixel[2] = elevationData[offset + 2];
pixel[3] = elevationData[offset + 3];
z1 = data.vert * calculateElevation(pixel);

dzdx = (z1 - z0) / dp;

// determine elevation for (pixelX, y0)
offset = (y0 * width + pixelX) * 4;
pixel[0] = elevationData[offset];
pixel[1] = elevationData[offset + 1];
pixel[2] = elevationData[offset + 2];
pixel[3] = elevationData[offset + 3];
z0 = data.vert * calculateElevation(pixel);

// determine elevation for (pixelX, y1)
offset = (y1 * width + pixelX) * 4;
pixel[0] = elevationData[offset];
pixel[1] = elevationData[offset + 1];
pixel[2] = elevationData[offset + 2];
pixel[3] = elevationData[offset + 3];
z1 = data.vert * calculateElevation(pixel);

dzdy = (z1 - z0) / dp;

slope = Math.atan(Math.sqrt(dzdx * dzdx + dzdy * dzdy));

aspect = Math.atan2(dzdy, -dzdx);
if (aspect < 0) {
aspect = halfPi - aspect;
} else if (aspect > halfPi) {
aspect = twoPi - aspect + halfPi;
} else {
aspect = halfPi - aspect;
}

cosIncidence =
sinSunEl * Math.cos(slope) +
cosSunEl * Math.sin(slope) * Math.cos(sunAz - aspect);

offset = (pixelY * width + pixelX) * 4;
scaled = 255 * cosIncidence;
shadeData[offset] = scaled;
shadeData[offset + 1] = scaled;
shadeData[offset + 2] = scaled;
shadeData[offset + 3] = elevationData[offset + 3];
}
}

return {data: shadeData, width: width, height: height};
}

const elevation = new XYZ({
url: 'https://{a-d}.tiles.mapbox.com/v3/aj.sf-dem/{z}/{x}/{y}.png',
crossOrigin: 'anonymous',
maxZoom: 13,
});

const raster = new Raster({
sources: [elevation],
operationType: 'image',
operation: shade,
});

const map = new Map({
target: 'map',
layers: [
new TileLayer({
source: new OSM(),
}),
new ImageLayer({
opacity: 0.3,
source: raster,
}),
],
view: new View({
extent: [-13675026, 4439648, -13580856, 4580292],
center: [-13615645, 4497969],
minZoom: 10,
zoom: 13,
}),
});

const controlIds = ['vert', 'sunEl', 'sunAz'];
const controls = {};
controlIds.forEach(function (id) {
const control = document.getElementById(id);
const output = document.getElementById(id + 'Out');
control.addEventListener('input', function () {
output.innerText = control.value;
raster.changed();
});
output.innerText = control.value;
controls[id] = control;
});

raster.on('beforeoperations', function (event) {
// the event.data object will be passed to operations
const data = event.data;
data.resolution = event.resolution;
for (const id in controls) {
data[id] = Number(controls[id].value);
}
});

界面布局文件index.html代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Shaded Relief</title>
<link rel="stylesheet" href="node_modules/ol/ol.css">
<style>
.map {
width: 100%;
height: 400px;
}
table.controls td {
padding: 2px 5px;
}
table.controls td:nth-child(3) {
text-align: right;
min-width: 3em;
}
</style>
</head>
<body>
<div id="map" class="map"></div>
<table class="controls">
<tr>
<td><label for="vert">vertical exaggeration:</label></td>
<td><input id="vert" type="range" min="1" max="5" value="1"/></td>
<td><span id="vertOut"></span> x</td>
</tr>
<tr>
<td><label for="sunEl">sun elevation:</label></td>
<td><input id="sunEl" type="range" min="0" max="90" value="45"/></td>
<td><span id="sunElOut"></span> °</td>
</tr>
<tr>
<td><label for="sunAz">sun azimuth:</label></td>
<td><input id="sunAz" type="range" min="0" max="360" value="45"/></td>
<td><span id="sunAzOut"></span> °</td>
</tr>
</table>
<!-- Pointer events polyfill for old browsers, see https://caniuse.com/#feat=pointer -->
<script src="https://cdn.jsdelivr.net/npm/elm-pep@1.0.6/dist/elm-pep.js"></script>
<script type="module" src="main.js"></script>
</body>
</html>